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In this paper, we consider the generalized phase retrieval from 
affine measurements. This problem aims to recover signals 
x ∈ Fd from the magnitude of the affine transformations yj =
‖M∗

j x + bj‖2
2, j = 1, . . . , m, where Mj ∈ Fd×r, bj ∈ Fr, F ∈

{R, C} and we call it generalized affine phase retrieval. We 
first develop a framework for generalized affine phase retrieval 
with presenting several necessary and sufficient conditions 
for {(Mj , bj)}mj=1 having generalized affine phase retrieval 
property. Next, we focus on the minimal measurement number 
problem and establish some results for it. Particularly, we 
show if {(Mj , bj)}mj=1 ⊂ Fd×r × Fr has generalized affine 
phase retrieval property, then m ≥ d + �d/r� for F = R (m ≥
2d +�d/r� for F = C). We also show that the lower bounds are 
tight provided r | d. These results imply that one can reduce 
the measurement number by raising r, i.e. the rank of Mj . 
This highlights a notable difference between generalized affine 
phase retrieval and generalized phase retrieval. Furthermore, 
using tools of algebraic geometry, we show that m ≥ 2d (resp. 
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m ≥ 4d −1) generic measurements A = {(Mj , bj)}mj=1 have the 
generalized phase retrieval property for F = R (resp. F = C).

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Phase retrieval

Phase retrieval aims to recover a signal x ∈ Fd from the measurements |〈aj ,x〉|, j =
1, . . . , m, where F = R or C and aj ∈ Fd are the measurement vectors. It arises in many 
areas such as X-ray crystallography [13,16], microscopy [15], astronomy [8], coherent 
diffractive imaging [17,11] and optics [19]. To state conveniently, set A := (a1, . . . , am)
and MA(x) := (|〈a1,x〉|, . . . , |〈am,x〉|) ∈ Rm. Noting that for any c ∈ F with |c| = 1 we 
have MA(x) = MA(cx) and hence we can only hope to recover x up to a unimodular 
constant. If MA(x) = MA(y) implies x ∈ {cy : c ∈ F , |c| = 1}, then we say A has phase 
retrieval property in Fd. A fundamental problem in phase retrieval is to give the minimal 
m for which there exists A = (a1, . . . , am)� ∈ Fm×d such that it has phase retrieval 
property in Fd. For the case F = R, it is well known that the minimal measurement 
number m is 2d − 1 [1]. For the complex case F = C, this question remains open. 
Specifically, Conca, Edidin, Hering and Vinzant [6] prove that m ≥ 4d − 4 generic 
measurement vectors A = (a1, . . . , am)� ∈ Cm×d have phase retrieval property in Cd

and they furthermore show 4d − 4 is sharp if d is in the form of 2k + 1, k ∈ Z+. In [18], 
for the case where F = C and d = 4, Vinzant present 11 = 4d − 5 < 4d − 4 measurement 
vectors and prove they have phase retrieval property in C4, which implies 4d − 4 is not 
sharp for some dimension d. Beyond the minimal measurement number problem, many 
efficient algorithms have also been developed for recovering x from MA(x) (see [4,5,10]).

1.2. Generalized phase retrieval and affine phase retrieval

A generalized version of phase retrieval, termed generalized phase retrieval, was intro-
duced by Wang and Xu [20]. For generalized phase retrieval, one aims to reconstruct 
x ∈ Fd through quadratic samples x∗A1x, . . . , x∗Amx where Aj ∈ Fd×d are Her-
mitian matrix for F = C (symmetric matrix for F = R). Set A := (Aj)mj=1 and 
MA(x) := (x∗A1x, . . . , x∗Amx). We say A has generalized phase retrieval property if 
MA(x) = MA(y) implies that x ∈ {cy : c ∈ F , |c| = 1}. In [20], Wang and Xu show 
the fantastic connection among phase retrieval, nonsingular bilinear form and embed-
ding. They also study the minimal m for which there exists A = (Aj)mj=1 such that it 
has generalized phase retrieval property. Particularly, they show that for the case where 
F = C, the measurement number m obeys m ≥ 4d −2 −2α where α denotes the number 
of 1’s in the binary expansion of d − 1. If we take Aj = aja

∗
j , then the generalized phase 
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retrieval reduces to the standard phase retrieval. Similarly, if we require Aj, j = 1, . . . , m, 
are orthogonal projection matrices, then the generalized phase retrieval reduces to phase 
retrieval by projection [3,2]. Hence, the generalized phase retrieval includes the standard 
phase retrieval and the phase retrieval by projection as a special case. Both standard 
phase retrieval and generalized phase retrieval require the measurement number is greater 
than or equal to 4d − 2 − 2α. However, as will be shown later, the minimal measurement 
number for generalized affine phase retrieval can be reduced to 2d +1 by raising the rank 
of Aj , which highlights a notable difference between generalized affine phase retrieval 
and generalized phase retrieval.

Affine phase retrieval arised in holography [14] as well as in phase retrieval with 
background information [21], which aims to recover x ∈ Fd from |〈aj ,x〉 + bj |, j =
1, . . . , m, where aj ∈ Fd and bj ∈ F . The authors of [9] develop the general framework of 
affine phase retrieval with highlighting the difference between affine phase retrieval and 
standard phase retrieval. Unlike the standard phase retrieval where one can only recover 
x up to a unimodular constant, it is possible to recover x exactly in affine phase retrieval. 
Particularly, for the case where F = C, the authors of [9] show that there exist m = 3d
measurements {(aj , bj)}mj=1 so that one can recover x from |〈aj ,x〉 + bj |, j = 1, . . . , m. 
They furthermore prove the measurement number 3d is sharp for recovering x ∈ Cd

from |〈aj ,x〉 + bj |, j = 1, . . . , m. Similarly, for the case where F = R, it was shown 
in [9] that m = 2d measurements are sufficient and necessary for recovering x from 
|〈aj ,x〉 + bj |, j = 1, . . . , m.

1.3. Generalized affine phase retrieval

In this paper, we consider the recovery of x ∈ Fd from the affine quadratic measure-
ments

yj = ‖M∗
j x + bj‖2

2, j = 1, . . . ,m,

where Mj ∈ Fd×r and bj ∈ Fr. Set A = {(Mj , bj)}mj=1 ⊂ Fd×r × Fr, we can view A as 
a point in Fm(d×r) × Fmr. Define the map MA : Fd → Rm by

MA(x) = (‖M∗
1x + b1‖2

2, . . . , ‖M∗
mx + bm‖2

2). (1.1)

Our goal is to study whether a signal x ∈ Fd can be uniquely reconstructed from MA(x). 
To state conveniently, we introduce the definition of the generalized affine phase retrieval 
property.

Definition 1.1. Let r ∈ Z≥1 and A = {(Mj , bj)}mj=1 ⊂ Fd×r × Fr. We say A has the 
generalized affine phase retrieval property if MA is injective on Fd.

We next introduce the connection between generalized affine phase retrieval and gen-
eralized phase retrieval. It is easy to check that
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yj = ‖M∗
j x + bj‖2

2 = x̃∗Ajx̃, j = 1, . . . ,m, (1.2)

where

x̃ =
(
x

1

)
and Aj =

(
MjM

∗
j Mjbj

(Mjbj)∗ b∗jbj

)
.

Equation (1.2) shows that generalized affine phase retrieval can be reduced to recover 
x̃ ∈ Fd+1 from x̃∗Ajx̃, j = 1, . . . , m. Since the last entry of x̃ is 1, we can recover x̃ from 
x̃∗Ajx̃, j = 1, . . . , m exactly rather than up to a global phase. Hence, the generalized 
affine phase retrieval can be considered as the extension of both the generalized phase 
retrieval and the affine phase retrieval.

1.4. Continuous map

Note that x ∈ Rd has d real variables (2d real variables for the complex case). Natu-
rally, one may be interested in whether it is possible to recover x ∈ Rd from d nonnegative 
measurements (2d nonnegative measurements for F = C). We state the question as fol-
lows. For j = 1, . . . , m, suppose that fj : Fd → R+ is a continuous nonnegative function, 
i.e. fj(x) ≥ 0. For x ∈ Fd, set

F(x) := (f1(x), . . . , fm(x)) ∈ Rm
+ . (1.3)

One may be interested in the question:What is the smallest m so that F is injective on 
Rd? Under some mild conditions for F, we show that m ≥ d +1 is necessary for F being 
injective on Rd (m ≥ 2d + 1 on Cd). As we will show later, there exists {(Aj , bj)}mj=1 ⊂
Rd×d×Rd with m = d +1 so that MA is injective on Rd. This implies that the generalized 
affine phase retrieval can achieve the lower bound m = d + 1. A similar conclusion also 
holds for the complex case.

1.5. Our contribution

In this paper, we develop the framework of the generalized affine phase retrieval. Par-
ticularly, we focus on the number of measurements needed to achieve generalized affine 
phase retrieval. We first present some equivalent conditions and then study the minimal 
measurement number to guarantee the generalized affine phase retrieval property for 
both real and complex signals. For F = R, we show that m ≥ d +

⌊
d
r

⌋
(m ≥ 2d +

⌊
d
r

⌋
for 

F = C) is necessary for there existing measurements {(Mj, bj)}mj=1 ⊂ Fd×r × Fr which 
has this property. We also show that the bounds are tight provided d/r ∈ Z. Compared 
with the generalized phase retrieval, the generalized affine phase retrieval can reduce the 
measurement number heavily by raising the rank of Mj . This also highlights a notable 
difference between the generalized affine phase retrieval and generalized phase retrieval.
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Using the tools developed in [1,6,20], we show that m ≥ 2d generic measurements 
{(M1, b1), . . . , (Mm, bm)} ∈ Fm(d×r)×mr for F = R (m ≥ 4d − 1 for F = C) can do 
generalized affine phase retrieval in Fd.

2. The minimal measurement number for continuous map

Recall that F : Fd → Rm
+ is a continuous map. The next theorem shows that the 

necessary condition for F being injective is m ≥ d + 1 under some mild condition for 
F(x).

Theorem 2.1. Suppose that F : Fd → Rm
+ is a continuous map which satisfies

lim
R→+∞

inf‖x‖≥R‖F(x)‖ = +∞. (2.1)

If m = d for F = R (m = 2d for F = C), then F is not injective on Fd.

Proof. Note that Cd ∼= R2d. We just need to consider the case where F = R. To this 
end, we use Sd to denote the d-sphere and use N to denote the north pole of Sd. Let 
g : Rd → Sd \ {N} be the natural homeomorphism between Rd and Sd \ {N}. Then 
Fg := g ◦ F ◦ g−1 is the operator which maps Sd \ {N} to g(Rd

+) ⊂ Sd \ {N}. Set

F̃g(x) :=
{

Fg(x), x ∈ Sd \ {N}
x, x = N .

Since F satisfies (2.1), F̃g is continuous on Sd. Note that F̃g(Sd) ⊂ g(Rd
+) ∪ {N}. Thus 

the range of F̃g is not the whole Sd. Recall that if a single point is removed from a 
d-sphere, it becomes homeomorphic to Rd, which means that F̃g(Sd) ↪→ Rd. We now get 
a continuous map from Sd to Rd. We abuse the notation and still use F̃g to denote the 
map. By Borsuk-Ulam theorem, there exists {x, −x} ⊂ Sd such that F̃g(x) = F̃g(−x). 
Let y1 = g−1(x) and y2 = g−1(−x), and then F(y1) = F(y2) since g is injective. Now, 
we claim that y1 = ∞ and y2 = ∞. Indeed, if y1 = ∞, then x = N since x = g(y1). 
Hence −x is the south pole which implies that F(y2) is finite since y2 = g−1(−x). 
Hence, we find two points y1 = y2 ∈ Rd, but F(y1) = F(y2), which arrives at the 
conclusion. �
Remark 2.2. In Theorem 2.1, we require that the image of F = (f1, . . . , fm) is a subset 
of Rd

+. If we remove the requirement of fj(x) ≥ 0, then there exists a map F : Rd → Rd

which is injective on Rd. In fact, we just need to take F(x) = (〈a1,x〉, . . . , 〈ad,x〉) where 
aj ∈ Rd satisfying span{a1, . . . , ad} = Rd, and then F is injective on Rd. Moreover, if 
we remove the condition (2.1), we can set F(x) := (exp(x1), . . . , exp(xd)) which is also 
injective on Rd.
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3. Generalized affine phase retrieval for real signals

In this section, we consider the generalized affine phase retrieval for real signals. We 
first state several equivalent conditions for the generalized affine phase retrieval. Suppose 
that M ∈ Rd×r and b ∈ Rr. Then the following formula is straightforward to check:

‖M�x + b‖2
2 − ‖M�y + b‖2

2 = 4
(
u�MM�v + (Mb)�v

)
for any x,y ∈ Rd (3.1)

where u = 1
2 (x + y) and v = 1

2 (x− y).

Theorem 3.1. Suppose that r ∈ Z≥1. Let A = {(Mj , bj)}mj=1 ⊂ Rd×r × Rr. Then the 
followings are equivalent:

(1) A has the generalize affine phase retrieval property in Rd.
(2) For any u, v ∈ Rd and v = 0, there exists a j with 1 ≤ j ≤ m such that

u�MjM
�
j v + (Mjbj)�v = 0.

(3) span{MjM
�
j u + Mjbj}mj=1 = Rd for any u ∈ Rd.

(4) The Jacobian of MA has rank d for all x ∈ Rd.

Proof. (1)⇔(2). Assume that there exist x = y in Rd such that MA(x) − MA(y) = 0. 
Then (3.1) means that for all j

‖M�
j x + bj‖2

2 − ‖M�
j y + bj‖2

2 = 4(u�MjM
�
j v + (Mjbj)�v) = 0.

Noting that v = 0, we conclude a contradiction with (2). It means that (2) ⇒ (1). The 
converse also follows from the same argument.

(2)⇔(3). If for some u such that span{MjM
�
j u + Mjbj}mj=1 = Rd, then there ex-

ists a v = 0 such that v ⊥ span{MjM
�
j u + Mjbj}mj=1. It implies that u�MjM

�
j v +

(Mjbj)�v = 0 for all j = 1, . . . , m. This is a contradiction. The converse clearly also 
holds.

(3)⇔(4). Note that the Jacobian J(x) of the map MA at x ∈ Rd is exactly

J(x) = 2[M1M
�
1 x + M1b1, . . . ,MmM�

mx + Mmbm].

Thus (3) is equivalent to that the rank of J(x) is d for all x ∈ Rd. �
Corollary 3.2. Suppose that r ∈ Z≥1 and A = {(Mj , bj)}mj=1 where (Mj , bj) ∈ Rd×r×Rr. 
If A has generalized affine phase retrieval property in Rd then m ≥ d +

⌊
d
r

⌋
.

Proof. To this end, we just need to show that if m ≤ d +
⌊
d
r

⌋
− 1, then A is not 

generalized affine phase retrievable in Rd. When r ≥ d + 1, the conclusion follows from 
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(3) in Theorem 3.1 directly. Hence, we only consider the case where r ≤ d. We claim 
that there exists u ∈ Rd such that Mj(M�

j u + bj) = 0 for all j = 1, . . . , 
⌊
d
r

⌋
. Thus, if 

m ≤
⌊
d
r

⌋
+ d − 1 then

span{MjM
�
j u + Mjbj}mj=1 = span{MjM

�
j u + Mjbj}mj=⌊ dr ⌋+1 = Rd.

According to (3) in Theorem 3.1, we arrive at the conclusion.
It remains to prove the claim. For any j = 1, . . . , 

⌊
d
r

⌋
, let b′j ∈ Rr be the orthogonal 

projection vector of bj onto the space spanned by the rows of Mj. Then we have Mj(bj−
b′j) = 0 for all j = 1, . . . , 

⌊
d
r

⌋
. On the other hand, since b′j is in the space spanned by 

the columns of M�
j , it means that there exists a vector u such that M�

j u+ b′j = 0, j =
1, . . . , 

⌊
d
r

⌋
. Combining the above two arguments, we have

Mj(M�
j u + bj) = Mj(−b′j + bj) = 0 for all j = 1, . . . ,

⌊
d

r

⌋
.

It completes the proof. �
According to the above corollary, if {(Mj, bj)}mj=1 is generalized affine phase retriev-

able in Rd then m ≥ d +
⌊
d
r

⌋
. We next show the bound d +

⌊
d
r

⌋
is tight provided r | d. 

To this end, we introduce the following lemma:

Lemma 3.3. Suppose that b1, . . . , br+1 ∈ Rr satisfy

span{b2 − b1, b3 − b1, . . . , br+1 − b1} = Rr. (3.2)

Then x = y if and only if ‖x + bj‖2 = ‖y + bj‖2 for all j = 1, . . . , r+1 where x, y ∈ Rr.

Proof. We denote z := x−y ∈ Rr and t := (‖x‖2
2−‖y‖2

2)/2. Then ‖x + bj‖2 = ‖y + bj‖2
is equivalent to b�j z + t = 0 for all j = 1, . . . , r + 1. To this end, we just need to show 
that ‖x + bj‖2 = ‖y + bj‖2 for all j = 1, . . . , r + 1 implies x = y. According to (3.2), 
the linear system

⎛⎜⎝ b�1 1
...

...
b�r+1 1

⎞⎟⎠( z

t

)
= 0

has only zero solution, i.e., (z, t) = 0, which implies x = y. �
Theorem 3.4. Suppose that r ∈ Z≥1 and m ≥ d +

⌊
d
r

⌋
+ εd,r where εd,r = 0 if d/r ∈ Z

and 1 if d/r /∈ Z. Then there exists {(Mj , bj)}mj=1 ⊂ Rd×r × Rr which has generalized 
affine phase retrieval property in Rd.
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Proof. We set

Tt := {(t− 1)r + 1, . . . , tr}, t = 1, . . . ,
⌊
d

r

⌋
and

T⌊ d
r

⌋
+1 :=

{
r

⌊
d

r

⌋
+ 1, . . . , d

}
.

Note that if d/r is an integer, then T⌊ d
r

⌋
+1 = ∅. For x ∈ Rd, set xTt

:= xITt
where 

ITt
denotes the indicator function of the set Tt (namely ITt

(s) = 1 if s ∈ Tt and 0 if 
s /∈ Tt). Similarly, we use (Mj)Tt

∈ Rr×r to denote a submatrix of Mj ∈ Rd×r with row 
indexes in Tt. Let {(Mj , bj)}mj=1 be the set of measurements which satisfies the following 
conditions:

(i) The matrix (Mj)Tt
= Ir and (Mj)[d]\Tt

is a zero matrix for j = (t − 1)(r + 1) +
1, . . . , t(r + 1) and t = 1, . . . , �d/r�, where Ir ∈ Rr×r is the identity matrix.

(ii) Set b(t−1)(r+1)+k = b′k for k = 1, . . . , r + 1, t = 1, . . . , �d/r�. The vectors 
b′1, . . . , b

′
r+1 ∈ Rr satisfy span{b′2 − b′1, b

′
3 − b′1, . . . , b

′
r+1 − b′1} = Rr.

Then, based on Lemma 3.3, for each t = 1, . . . , �d/r�, we can recover xTt
from 

‖M�
j x + bj‖2, j = (t − 1)(r + 1) + 1, . . . , t(r + 1). Hence, when d/r ∈ Z, we can recover 

x = xT1 + · · · + xT(d/r+1) from ‖Mjx + bj‖2, j = 1, . . . , m where m = (r + 1) �d/r� =
d + �d/r�.

When d/r is not an integer, we need consider the recovery of xT�d/r�+1 . Note that 
#T	d/r
+1 = d − r �d/r�. Similar as before, we can construct matrix Mj ∈ Rd×r and 
bj ∈ Rr, j = �d/r� (r + 1) + 1, . . . , �d/r� + d + 1 so that one can recover xT�d/r�+1

from ‖M�
j x + bj‖2, j = �d/r� (r+1) +1, . . . , �d/r�+d +1. Combining the measurement 

matrices above, we obtain the measurement number m = �d/r� (r+1) +d −r �d/r�+1 =
d + �d/r� + 1 is sufficient to recover x provided d/r is not an integer. �
Remark 3.5. If we take r = d in Theorem 3.4, we can construct m = d + 1 matrices 
{(Mj , bj)}mj=1 so that MA(x) = (‖M∗

1x + b1‖2
2, . . . , ‖M∗

mx + bm‖2
2) is injective on Rd. 

Hence, generalized affine phase retrieval can achieve the lower bound m = d + 1 which 
is presented in Theorem 2.1.

As shown in [20, Theorem 2.3], the set of measurement matrices which has generalize 
phase retrieval property is an open set. The following theorem shows that the set of A
having generalized affine phase retrieval property is not an open set in Rm(d×r) ×Rmr. 
The result shows a difference between generalized phase retrieval and generalized affine 
phase retrieval.
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Theorem 3.6. Let r ∈ Z≥1 and m ≥ d +
⌊
d
r

⌋
+ εd,r where εd,r = 0 if d/r ∈ Z and 1 if 

d/r /∈ Z. Then the set of generalized affine phase retrieval {(M1, b1), . . . (Mm, bm)} ∈
Rm(d×r) ×Rmr is not an open set in Rm(d×r) ×Rmr.

Proof. To this end, we only need to find a measurement set {(M1, b1), . . . , (Mm, bm)} ∈
Rm(d×r) ×Rmr which has generalized affine phase retrieval property in Rd, but for any 
ε > 0 there exists a small perturbation measurement set {(M̃1, b1), . . . , (M̃m, bm)} ∈
Rm(d×r) ×Rmr with ‖Mj − M̃j‖F ≤ ε which is not generalized affine phase retrievable.

We first consider the case where r = d. Without loss of generality we only need to 
consider the case m = d + 1 (for the case where m > d + 1, we just take (Mj , bj) = 0
for j = d + 2, . . . , m). Set Mj := Id, j = 1, . . . , d + 1, and assume that b1, . . . , bd+1 ∈ Rd

satisfy

span{b2 − b1, . . . , bd+1 − b1} = Rd.

Here, we also require that the first entries of b2, . . . , bd+1 ∈ Rr are zero, i.e., b2,1 = · · · =
bd+1,1 = 0. According to Lemma 3.3, the measurement set {(M1, b1), . . . , (Md+1, bd+1)} ∈
R(d+1)(d×d) ×R(d+1)d has generalized affine phase retrievable property in Rd.

We perturb M1 to M̃1 = Id + δb1,1E21, where E21 denotes the matrix with (2, 1)-th 
entry being 1 and all other entries being 0 and δ > 0. Furthermore, we let M̃j = Mj

for j = 2, . . . , d + 1. Then {(M̃1, b1), . . . , (M̃d+1, bd+1)} ∈ R(d+1)(d×r) × R(d+1)r is not 
generalized affine phase retrievable. To see this, we let x = (b1,1, −1/δ, 0, . . . , 0)� and 
y = (−b1,1, −1/δ, 0, . . . , 0)�. It is easy to check that

‖M̃�
j x + bj‖2 = ‖M̃�

j y + bj‖2 j = 1, . . . , d + 1.

By taking δ sufficiently small, we will have ‖Mj − M̃j‖F ≤ ε, which completes the proof 
for the case where r = d.

We next consider the case where r ≤ d − 1. Similar with the proof of Theorem 3.4, 
we set

Tt := {(t− 1)r + 1, . . . , tr}, t = 1, . . . ,
⌊
d

r

⌋
and

T⌊ d
r

⌋
+1 :=

{
r

⌊
d

r

⌋
+ 1, . . . , d

}
.

For m = d +
⌊
d
r

⌋
+ εd,r, we require that {(M1, b1), . . . , (Mm, bm)} satisfies the conditions 

(i) and (ii) in the proof of Theorem 3.4. We furthermore require that the first entries of 
b2, . . . , bm are 0, i.e., b2,1 = · · · = bm,1 = 0. Note that (M1)T1 = Ir. We perturb (M1)T1 to 
(M̃1)T1 = Ir + δb1,1E21 and M̃j = Mj , j = 2, . . . , m. Then similar as before, (M̃j , bj)mj=1
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does not have affine phase retrieval property but we will have ‖Mj − M̃j‖F ≤ ε by taking 
δ sufficiently small. We complete the proof for r ≤ d − 1. �

The following theorem shows that if the measurement number m ≥ 2d, then a generic 
{(M1, b1), . . . , (Mm, bm)} ∈ Rm(d×r) × Rmr has generalized affine phase retrieval prop-
erty in Rd.

Theorem 3.7. Let m ≥ 2d and r ∈ Z≥1. Then a generic A = {(M1, b1), . . . , (Mm, bm)} ∈
Rm(d×r) ×Rmr has generalized affine phase retrieval property in Rd.

To prove this theorem, we introduce some notations and lemmas. First, recall that

yj = ‖M∗
j x + bj‖2

2 = x̃∗Ajx̃, j = 1, . . . ,m,

where

x̃ =
(
x

1

)
and Aj =

(
MjM

∗
j Mjbj

(Mjbj)∗ b∗jbj

)
. (3.3)

Thus, the map MA can be rewritten as

MA(x) := (‖M∗
1x + b1‖2

2, . . . , ‖M∗
mx + bm‖2

2)

= (tr(A1x̃x̃
∗), . . . , tr(Amx̃x̃∗)).

For {(M1, b1), . . . , (Mm, bm)} ∈ Cm(d×r) ×Cmr, we define the map T : C(d+1)×(d+1) →
Cm by

T(Q) := (tr(A∗
1Q), . . . , tr(A∗

mQ)) . (3.4)

Lemma 3.8. Suppose that r ∈ Z≥1. Then A = {(M1, b1), . . . , (Mm, bm)} ∈ Rm(d×r) ×
Rmr is not generalized affine phase retrievable if and only if there exists nonzero Q ∈
R(d+1)×(d+1) satisfies

Q� = Q, Qd+1,d+1 = 0, rank(Q) ≤ 2,
T(Q) = 0, Q2

1,d+1 + · · · + Q2
d,d+1 = 1. (3.5)

Proof. Assume that A is not generalized affine phase retrievable, and then there exist 
x, y ∈ Rd with x = y such that MA(x) = MA(y). It implies that

T(x̃x̃� − ỹỹ�) = 0,

where
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x̃ =
(
x

1

)
, ỹ =

(
y

1

)
.

Take Q := λ(x̃x̃�− ỹỹ�) where λ = 1/‖x− y‖2
2 ∈ R is a constant. Then Q is a nonzero 

matrix which satisfies (3.5).

We next assume there exists a nonzero Q0 satisfies (3.5). According to the spectral 
decomposition theorem, we have

Q0 = λ1ũũ
� − λ2ṽṽ

�

where λ1, λ2 ∈ R and ũ, ̃v are normalized orthogonal vectors in Rd+1. Since 
(Q0)d+1,d+1 = 0, which gives that

λ1ũ
2
d+1 − λ2ṽ

2
d+1 = 0.

Thus λ1 and λ2 have the same sign. We claim that λ1λ2 = 0 and ũd+1ṽd+1 = 0. Indeed, 
if λ2 = 0, then ũd+1 = 0. Hence, we obtain (Q0)1,d+1 = · · · = (Q0)d+1,d+1 = 0 which 
contradicts with (3.5). So, λ2 = 0. Similarly, we can show λ1 = 0, ũd+1 = 0 and ṽd+1 = 0. 
We take x̃ := ũ/ũd+1 and ỹ := ṽ/ṽd+1, and then Q0 can be rewritten as

Q0 = λ1ũ
2
d+1x̃x̃

� − λ2ṽ
2
d+1ỹỹ

� = c(x̃x̃� − ỹỹ�)

where c = λ1ũ
2
d+1 = λ2ṽ

2
d+1 ∈ R is a constant. Since T(Q0) = 0, it gives that T(x̃x̃�) =

T(ỹỹ�). We write x̃ = (x, 1)� and ỹ = (y, 1)� and then MA(x) = MA(y) which 
implies that A is not generalized affine phase retrievable. �
Proof of Theorem 3.7 . We use Gm,d,r to denote the subset of

(M1, b1, . . . ,Mm, bm, Q) ∈ Cd×r ×Cr × · · · ×Cd×r ×Cr ×C(d+1)×(d+1),

which satisfies the following property:

Q� = Q, Qd+1,d+1 = 0, rank(Q) ≤ 2,
T(Q) = 0, Q2

1,d+1 + · · · + Q2
d+1,d+1 = 1.

The Gm,d,r is a well defined complex affine variety because the defining equations are 
polynomials in each set of variables. We next consider the dimension of this complex 
affine variety Gm,d,r. To this end, let π1 be projections on the first 2m coordinates of 
Gm,d,r, i.e.,

π1(M1, b1, . . . ,Mm, bm, Q) = (M1, b1, . . . ,Mm, bm).

Similarly, we can define π2 by
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π2(M1, b1, . . . ,Mm, bm, Q) = Q.

We claim that π2(Gm,d,r) = Ld where

Ld := {Q ∈ C(d+1)×(d+1) : Q� = Q, Qd+1,d+1 = 0, rank(Q) ≤ 2,

Q2
1,d+1 + · · · + Q2

d+1,d+1 = 1}.

Indeed, for any fixed Q′ ∈ Ld, there exist {(M ′
j , b

′
j)}mj=1 ∈ Cd×r × Cr satisfying 

T(Q′) = 0, because for each j the equation tr((A′
j)∗Q′) = 0 is a polynomial for the 

variables (M ′
j , b

′
j). Here, each matrix A′

j is defined by (M ′
j , b

′
j) as (3.3). This implies 

that (M ′
1, b

′
1, . . . , M

′
m, b′m, Q′) ∈ Gm,d,r and π2(M ′

1, b
′
1, . . . , M

′
m, b′m, Q′) = Q′. Thus we 

have π2(Gm,d,r) = Ld. Note that Ld ⊂ C(d+1)×(d+1) is an affine variety with dimension 
2d − 1 and hence dim(π2(Gm,d,r)) = 2d − 1.

We next consider the dimension of the preimage π−1
2 (Q0) ∈ Cd×r×Cr×· · ·×Cd×r×

Cr for a fixed nonzero Q0 ∈ Ld. For each pair (Mj , bj) ∈ Cd×r × Cr, the equation 
tr(M∗

j Q0) = 0 defines a hypersurface of dimension dr + r − 1 in Cd×r ×Cr. Hence, the 
preimage π−1

2 (Q0) has dimension m(dr + r − 1). Then, according to [12, Cor.11.13]

dim(Gm,d,r) = dim(π2(Gm,d,r)) + dim(π−1
2 (Q0))

= m(dr + r − 1) + 2d− 1.

If m ≥ 2d, then

dim(π1(Gm,d,r)) ≤ dim(Gm,d,r) = m(dr + r − 1) + 2d− 1 < m(dr + r).

Hence,

dimR((π1(Gm,d,r))R) ≤ dim(π1(Gm,d,r)) < m(dr + r) = dim(Rm(d×r) ×Rmr),

which implies that (π1(Gm,d,r))R lies in a sub-manifold of Rm(d×r) × Rmr. Here, the 
first inequality follows from [7]. However, Lemma 3.8 implies that (π1(Gm,d,r))R contains 
precisely these {(M1, b1), . . . , (Mm, bm)} which is not generalized affine phase retrieval 
in Rd. Hence, we arrive at conclusion. �
4. Generalized affine phase retrieval for complex signals

We consider the complex case in this section. Then for any x, y ∈ Cd, we have

‖M∗x + b‖2
2 − ‖M∗y + b‖2

2 = 4R (u∗MM∗v + (Mb)∗v) (4.1)

where u = 1
2 (x + y) and v = 1

2(x − y). Here, we use R(c) to denote the real part of a 
complex number c.
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Theorem 4.1. Suppose that r ∈ Z≥1. Let A = {(Mj , bj)}mj=1 ⊂ Cd×r × Cr. Then the 
followings are equivalent:

(1) A has the generalize affine phase retrieval in Cd.
(2) For any u, v ∈ Cd and v = 0, there exists a j with 1 ≤ j ≤ m such that

R(u∗MjM
∗
j v + (Mjbj)∗v) = 0.

(3) Viewing MA as a map R2d → Rm, the real Jacobian of MA(x) has rank 2d for all 
x ∈ R2d.

Proof. (1)⇔(2). We first show that (2) ⇒ (1). We assume that (1) does not hold. Then 
there exist x = y in Cd such that MA(x) = MA(y). From (4.1) for all j we have

‖M∗
j x + bj‖2

2 − ‖M∗
j y + bj‖2

2 = 4R(u∗MjM
∗
j v + (Mjb)∗v) = 0.

Noting that v = 0, we conclude a contradiction with (2), which implies (1) holds. The 
converse also follows from the similar argument.

(2)⇔(3). Note that MjM
∗
j is a Hermitian matrix and we can write MjM

∗
j = Bj + iCj

with Bj , Cj ∈ Rd×d and B�
j = Bj , C�

j = −Cj . Let

Fj =
(
Bj −Cj

Cj Bj

)
.

Then for any u = uR + iuI ∈ Cd, we have

‖M∗
j u + bj‖2

2 = ũ�Fjũ + 2c̃�j ũ + b∗jbj ,

where

ũ =
[
uR

uI

]
and c̃j =

[
(Mjbj)R
(Mjbj)I

]
.

The real Jacobian J(u) of the map MA at u ∈ Cd is exactly

J(u) = 2[F1ũ + c̃1, . . . , Fmũ + c̃m].

For any v = vR + ivI ∈ Cd, we have

2R(u∗MjM
∗
j v + (Mjbj)∗v) = [v�

R,v
�
I ]Jj(u), (4.2)

where Jj(u) denotes the j-column of J(u), vR and vI denote the real and imaginary 
part of v, respectively. Thus it is clear that (2) and (3) are equivalent. �
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Corollary 4.2. Let r ∈ Z≥1 and A = {(Mj , bj)}mj=1 ⊂ Cd×r × Cr. If A has generalized 
affine phase retrievable property in Cd then m ≥ 2d + �d/r�.

Proof. To this end, we just need to show that A does not have generalized affine phase 
retrievable property in Cd provided m ≤ 2d + �d/r�− 1. We first claim that there exists 
a u0 ∈ Cd such that M∗

j u0 +bj = 0 for all j = 1, . . . , �d/r�. Fix u0, the following system 
are homogeneous linear equations for the variables vR, vI ∈ Rd:

R((MjM
∗
j u0 + Mjbj)∗v) = 0, j = �d/r� + 1, . . . ,m. (4.3)

Note that those equations have 2d real variables vR, vI , but the number of equations is 
at most 2d − 1. It means that (4.3) must have a nontrivial solution v0 = 0. Hence, if 
m ≤ 2d + �d/r� − 1, then there exist u0, v0 ∈ Cd with v0 = 0 so that

R(u∗
0MjM

∗
j v0 + (Mjbj)∗v0) = 0 for all j = 1, . . . ,m

which contradicts with (2) in Theorem 4.1.
Finally, we need to prove the claim. For any j = 1, . . . , 

⌊
d
r

⌋
, let b′j ∈ Cr be the 

projection vector of bj onto the space spanned by the rows of Mj. Then we have Mj(bj−
b′j) = 0 for all j = 1, . . . , 

⌊
d
r

⌋
. On the other hand, since each b′j is in the space spanned 

by the columns of M∗
j , it means that there exists a vector u such that M∗

j u + b′j =
0, j = 1, . . . , 

⌊
d
r

⌋
. Combining the above two arguments, we have

Mj(M∗
j u + bj) = Mj(−b′j + bj) = 0 for all j = 1, . . . ,

⌊
d

r

⌋
.

It completes the proof. �
Lemma 4.3. Let z1, z2 ∈ Cr and suppose that b1, . . . , b2r+1 ∈ Cr satisfy

spanR{b2 − b1, . . . , b2r+1 − b1} = Cr. (4.4)

Then z1 = z2 if ‖z1 + bj‖2 = ‖z2 + bj‖2 for all j = 1, . . . , 2r + 1.

Proof. We set zR := z1,R−z2,R ∈ Rr, zI := z1,I−z2,I ∈ Rr and t := (‖z1‖2
2−‖z2‖2

2)/2. 
Then ‖z1 + bj‖2 = ‖z2 + bj‖2 implies that b�j,RzR+b�j,IzI+t = 0 for all j = 1, . . . , 2r+1. 
The (4.4) implies that the rank of the matrix

A =

⎡⎢⎣ b�1,R b�1,I 1
...

...
...

b�2r+1,R b�2r+1,I 1

⎤⎥⎦
is 2r + 1. And hence A[z�

R, z
�
I , t]� = 0 has only zero solution which means that z1 =

z2. �
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Next, we will show that the bound m ≥ 2d + �d/r� is tight provided r | d.

Theorem 4.4. Suppose that m ≥ 2d + �d/r� + εd,r where εd,r = 0 if d/r ∈ Z and 1 if 
d/r /∈ Z. There exists A = {(Mj , bj)}mj=1 ⊂ Cd×r × Cr which has generalized affine 
phase retrieval property in Cd.

Proof. We set

Tt := {(t− 1)r + 1, . . . , tr}, t = 1, . . . ,
⌊
d

r

⌋

and

T⌊ d
r

⌋
+1 :=

{
r

⌊
d

r

⌋
+ 1, . . . , d

}
.

We first consider the case where d/r is an integer with T⌊ d
r

⌋
+1 = ∅. Similarly to the 

real case, for x ∈ Cd, set xTt
:= xITt

where ITt
denotes the indicator function of the 

set Tt. Let (Mj)Tt
∈ Cr×r denote a submatrix of Mj ∈ Cd×r with row indexes in 

Tt. Let (Mj , bj), j = 1, . . . , m, be the set of measurements which satisfies the following 
conditions:

(i) The matrix (Mj)Tt
= Ir and (Mj)[d]\Tt

is a zero matrix for j = (t − 1)(2r + 1) +
1, . . . , t(2r + 1) and t = 1, . . . , �d/r�, where Ir is r × r the identity matrix.

(ii) Set b(t−1)(2r+1)+k = b′k for k = 1, . . . , 2r + 1, t = 1, . . . , �d/r�. The vectors 
b′1, . . . , b

′
2r+1 ∈ Cr satisfy spanR{b′2 − b′1, b

′
3 − b′1, . . . , b

′
2r+1 − b′1} = Cr.

Then based on Lemma 4.3, for each t = 1, . . . , �d/r�, we can recover xTt
from 

‖M∗
j x + bj‖2, j = (t −1)(2r+1) +1, . . . , t(2r+1). Hence, when d/r ∈ Z, we can recover 

x = xT1 + · · · + xT(d/r+1) from ‖M∗
j x + bj‖2, j = 1, . . . , m where m = (2r + 1) �d/r� =

2d + �d/r�.
When d/r is not an integer, we need to consider the recovery of xT�d/r�+1 . Note that 

#T	d/r
+1 = d − r �d/r�. Similar as before, we can construct matrix Mj ∈ Cd×r, and 
bj ∈ Cr, j = �d/r� (2r+1) +1, . . . , �d/r� (2r+1) +2d −2r �d/r�+1 so that one can recover 
xT�d/r�+1 from ‖M∗

j x + bj‖2, j = �d/r� (2r+1) +1, . . . , �d/r� (2r+1) +2d −2r �d/r�+1. 
Combining the measurement matrices above, we obtain the measurement number m =
�d/r� (2r+1) +2d − 2r �d/r�+1 = 2d + �d/r�+1 is sufficient to recover x provided d/r
is not an integer. �

Similar to the real case, the set of A ∈ Cm(d×r)×Cmr which can do generalized affine 
phase retrieval is not an open set.
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Theorem 4.5. Let r ∈ Z≥1 and m ≥ 2d +
⌊
d
r

⌋
+ εd,r where εd,r = 0 if d/r ∈ Z and 1 if 

d/r /∈ Z. Then the set of generalized affine phase retrieval {(M1, b1), . . . , (Mm, bm)} ∈
Cm(d×r) ×Cmr is not an open set.

Proof. We only need to find a measurement set {(M1, b1), . . . , (Mm, bm)} ∈ Cm(d×r) ×
Cmr which has generalized affine phase retrieval property in Cd, but for any ε > 0 there 
exists a small perturbation measurement set {(M̃1, b1), . . . , (M̃m, bm)} ∈ Cm(d×r)×Cmr

with ‖Mj − M̃j‖F ≤ ε which is not generalized affine phase retrievable.
We first consider the case where r = d. Without loss of generality we only need to 

consider the case m = 2d +1 (for the case where m > 2d +1, we just take (Mj , bj) = (0, 0)
for j = 2d + 2, . . . , m). Set Mj := Id, j = 1, . . . , 2d + 1, and

bj =

⎧⎪⎨⎪⎩
iej j = 1, . . . , d
ej j = d + 1, . . . , 2d
0 j = 2d + 1

, (4.5)

where {e1, . . . , ed} is the canonical basis vectors in Cd, i.e. the jth entry of ej is 1 and 
other entries are 0. A simple observation is that b1, . . . , b2d+1 ∈ Cd satisfy

spanR{b2 − b1, . . . , b2d+1 − b1} = Cd.

According to Lemma 3.3, the measurement set {(Mj , bj)}2d+1
j=1 has generalized affine 

phase retrievable property in Cd.
We perturb M1 to M̃1 = Id+ iδE12− iδE21, where E12 denotes the matrix with (1, 2)-

th entry being 1 and all other entries being 0 and δ > 0. Furthermore, we let M̃j = Mj

for j = 2, . . . , 2d + 1. Then {(M̃j , bj)}mj=1 ⊂ Cd×r × Cr is not generalized affine phase 
retrievable. To see this, we let x = (i, − 1

2δ , 0, . . . , 0)� and y = (−i, − 1
2δ , 0, . . . , 0)�. It is 

easy to check that

‖M̃∗
j x + bj‖2 = ‖M̃∗

j y + bj‖2 j = 1, . . . , 2d + 1.

By taking δ sufficiently small, we will have ‖Mj − M̃j‖F ≤ ε, which completes the proof 
for the case where r = d.

We next consider the case where r ≤ d − 1. Using the notations in Theorem 4.4, we 
set

Tt := {(t− 1)r + 1, . . . , tr}, t = 1, . . . ,
⌊
d

r

⌋
and

T⌊ d
r

⌋
+1 :=

{
r

⌊
d
⌋

+ 1, . . . , d
}
.

r
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For m = 2d +
⌊
d
r

⌋
+ εd,r, we require that {(Mj, bj)}mj=1 satisfies the conditions (i) and 

(ii) in the proof of Theorem 4.4, i.e.,

(i) The matrix (Mj)Tt
= Ir and (Mj)[d]\Tt

is a zero matrix for j = (t − 1)(2r + 1) +
1, . . . , t(2r+1) and t = 1, . . . , �d/r�, where Ir is the identity matrix with size r × r.

(ii) Set b(t−1)(2r+1)+k = b′k for k = 1, . . . , 2r + 1, t = 1, . . . , �d/r�. The vectors 
b′1, . . . , b

′
2r+1 ∈ Cr satisfy spanR{b′2 − b′1, b

′
3 − b′1, . . . , b

′
2r+1 − b′1} = Cr.

Particularly, we require that b′1, . . . , b
′
2r+1 ∈ Cr are similarly defined by (4.5). Note that 

(M1)T1 = Ir. Similar as before, we perturb (M1)T1 to (M̃1)T1 = Ir + iδE12 − iδE21 and 
M̃j = Mj , j = 2, . . . , m. Then {(M̃j , bj)}mj=1 does not have affine phase retrieval property 

but we will have ‖Mj − M̃j‖F ≤ ε by taking δ sufficiently small, which completes the 
proof for r ≤ d − 1. �
Theorem 4.6. Let r ∈ Z≥1 and m ≥ 4d − 1. Then a generic {(M1, b1), . . . , (Mm, bm)} ∈
Cm(d×r) ×Cmr has generalized affine phase retrieval property in Cd.

To this end, we introduce some lemmas.

Lemma 4.7. Suppose that r ∈ Z≥1. Then A = {(M1, b1), . . . , (Mm, bm)} ∈ Cm(d×r) ×
Cmr is not generalized affine phase retrievable if and only if there exists nonzero Q ∈
C(d+1)×(d+1) satisfies

Q∗ = Q, Qd+1,d+1 = 0, rank(Q) ≤ 2, T(Q) = 0,
Q1,d+1 ·Qd+1,1 + · · · + Qd,d+1 ·Qd+1,d = 1,

(4.6)

where the linear operator T is defined in (3.4).

The proof of Lemma 4.7 is similar to the one of Lemma 3.8. We omit the detail here. 
To state conveniently, we use Cd×d

sym to denote the set of symmetric complex d ×d matrices 
and use Cd×d

skew to denote the set of skew-symmetric complex d × d matrices.

Definition 4.8. Let Gm,d,r denote the set of (U1, c1, V1, d1, . . . , Um, cm, Vm, dm, X, Y )
where Uj , Vj ∈ Cd×r, cj , dj ∈ Cr, X ∈ C(d+1)×(d+1)

sym , Y ∈ C(d+1)×(d+1)
skew which satis-

fies the following properties:

Xd+1,d+1 = 0, rank(X + iY ) ≤ 2, 〈Aj , X + iY 〉 = 0, j = 1, . . . ,m
(X1,d+1 + iY1,d+1)(Xd+1,1 + iYd+1,1) + · · · + (Xd,d+1 + iYd,d+1)(Xd+1,d + iYd+1,d) = 1,

where

Aj =
(

MjM
∗
j Mjbj

(Mjbj)∗ b∗bj

)
, (4.7)
j
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Mj = Uj + iVj and bj = cj + idj .

Recall that rank(X + iY ) ≤ 2 is equivalent to the vanishing to all 3 × 3 minors of 
X + iY . Hence, we can view Gm,d,r as a complex affine variety. Next, we consider the 
dimension of Gm,d,r.

Lemma 4.9. The complex affine variety Gm,d,r has dimension (2dr + 2r − 1)m + 4d − 2.

Proof. Let G′
m,d,r be the set of (U1, c1, V1, d1, . . . , Um, cm, Vm, dm, Q) where Uj , Vj ∈

Cd×r, cj , dj ∈ Cr, Q ∈ C(d+1)×(d+1) which satisfies

Qd+1,d+1 = 0, rank(Q) ≤ 2, 〈Aj , Q〉 = 0, j = 1, . . . ,m
Q1,d+1 ·Qd+1,1 + · · · + Qd,d+1 ·Qd+1,d = 1,

where matrices Aj are defined by (4.7). Note that G′
m,d,r is a well defined complex affine 

variety because the defining equations are polynomials in each set of variables. It is clear 
that Gm,d,r and G′

m,d,r are linear isomorphic since we can identify Cd×d
sym × Cd×d

skew with 
Cd×d by the map (X, Y ) �→ X+ iY = Q. Indeed, any complex matrix Q can be uniquely 
written as Q = X + iY where X = (Q + Q�)/2 is a complex symmetric matrix and 
Y = (Q −Q�)/2i is a complex skew-symmetric matrix. Hence, to this end, it is sufficient 
to consider the dimension of G′

m,d,r.
We let π1 and π2 be projections on the first 4m coordinates and the last coordinate 

of G′
m,d,r, respectively, i.e.,

π1(U1, c1, V1,d1, . . . , Um, cm, Vm,dm, Q) = (U1, c1, V1,d1, . . . , Um, cm, Vm,dm)

and

π2(U1, c1, V1,d1, . . . , Um, cm, Vm,dm, Q) = Q.

We claim that π2(Gm,d,r) = Ld where

Ld := {Q ∈ C(d+1)×(d+1) : Qd+1,d+1 = 0,

rank(Q) ≤ 2, Q1,d+1 ·Qd+1,1 + · · · + Qd,d+1 ·Qd+1,d = 1}.

Indeed, for any fixed Q′ ∈ Ld, there exists {(U ′
j , c′j , V ′

j , d′
j)}mj=1 ∈ Cd×r×Cr×Cd×r×Cr

satisfying 〈A′
j , Q

′〉 = 0, j = 1, . . . , m. Here, each matrix A′
j is defined by (U ′

j , c′j , V ′
j , d′

j)
as (4.7). It is because that for each j the equation 〈A′

j , Q
′〉 = 0 is a polynomial which 

only contains variables (U ′
j , c′j , V ′

j , d′
j). Thus we have π2(G′

m,d,r) = Ld. Note that Ld ⊂
C(d+1)×(d+1) is an affine variety with dimension 4d − 2 and hence dim(π2(G′

m,d,r)) =
4d − 2.

We next consider the dimension of the preimage π−1
2 (Q0) for a fixed nonzero Q0 ∈

Ld. For each pair (Uj, cj , Vj , dj), the equation 〈Aj , Q0〉 = 0 defines a hypersurface of 
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dimension 2dr + 2r − 1 in Cd×r × Cr × Cd×r × Cr. Hence, the preimage π−1
2 (Q0) has 

dimension m(2dr + 2r − 1). Then, according to [12, Cor.11.13]

dim(Gm,d,r) = dim(G′
m,d,r) = dim(π2(G′

m,d,r)) + dim(π−1
2 (Q0))

= m(2dr + 2r − 1) + 4d− 2. �
Proof of Theorem 4.6 . For each (Mj , bj) ∈ Cd×r × Cr, we use Uj , Vj and cj , dj to 
denote the real and imaginary part of Mj and bj , respectively. By Lemma 4.7, a tuple 
of real matrices {(Uj , cj , Vj , dj)}mj=1 for which the corresponding {(Mj , bj)}mj=1 does 
not have generalized affine phase retrieval property gives a point {(Uj, cj , Vj , dj)}mj=1 ∈
π1((Gm,d,r)R) ⊂ (π1(Gm,d,r))R. A simple observation is that, if m ≥ 4d − 1, then

dim(π1(Gm,d,r)) ≤ dim(Gm,d,r) = m(2dr + 2r − 1) + 4d− 2 < m(2dr + 2r).

Hence,

dimR((π1(Gm,d,r))R) ≤ dim(π1(Gm,d,r)) < m(2dr + 2r) = dim(Rd×r ×Rr ×Rd×r ×Rr).

This implies that the set

{(Mj , bj)mj=1 ∈ Cd×r ×Cr : (Mj , bj)mj=1

does not have generalized affine phase retrieval property}

corresponds to a set {(Uj , cj , Vj , dj)}mj=1 which lies in a sub-manifold of Rd×r × Rr ×
Rd×r ×Rr. Hence, we arrive at conclusion. �
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